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A Proof of Proposition 1

Guess that the value function Vt = θtnt,we have differential value functions V ′
θ = nt, V ′

θ = θt,
and V ′′

nθ = 1.By plugging them in Eq. (21), the HJBI equation, we get

ρdt = sup
dζt≥0,xt≥0

inf
ht∈[−∆,∆]

1− θt
θt

dζt + (µθ
t + htσ

θ
t )dt+ r(1− xt)dt

+ xt

{
α− ιt
qt

+ [Φ(ιt)− δ + htσ + µq
t + σσq

t ] + σθ
t (σ + σq

t )

}
dt,

(A.1)

and

ρdt = sup
dζt≥0,xt≥0

inf
ht∈[−∆,∆]

1− θt
θt

dζt + µθ
tdt+ r(1− xt)dt+ ht[σ

θ
t + xt(σ + σq

t )]dt

+ xt

{
α− ιt
qt

+ [Φ(ιt)− δ + htσ + µq
t + σσq

t ] + σθ
t (σ + σq

t )

}
dt.

(A.2)
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Volatility Terms σ , σq
t , and σθ

t are greater than 0. Meanwhile, xt ≥ 0. As a result,
σθ
t + xt(σ + σq

t ) ≥ 0, which means that the value of ht is to be −∆. Thus, we have

ρdt = sup
dζt≥0,xt≥0

1− θt
θt

dζt + (µθ
t −∆σθ

t )dt+ r(1− xt)dt

+ xt

{
α− ιt
qt

+ [Φ(ιt)− δ + htσ + µq
t + σσq

t ] + σθ
t (σ + σq

t )

}
dt.

(A.3)

θt should meet two conditions. The first condition is that θt ≥ 1. Especially, the marginal
utilities of wealth equals that of consumption when θt = 1. In that case, dζt > 0. The second
condition is that E[e−ρtθtnt] → 0, namely the Non-Ponzi condition. Holding dζt = 0 and
xt = 0,the representative expert’s marginal utility of wealth θt’s drift term µθ

t satisfies

µθ
t = ρ+∆σθ

t − r. (A.4)

By taking derivatives of both sides of Eq. (A.4) with respect to risk asset ratio xt , we know
that θt’s volatility term σθ

t satisfies

σθ
t = −

α−ιt
qt

+ Φ(ιt)− δ −∆σ + µq
t −∆σq

t + σσq
t − r

σ + σq
t

. (A.5)

Therefore, if experts hold capital (xt > 0), σθ
t equals the Sharp ratio of holding capital:

α− ιt
qt

+ Φ(ιt)− δ −∆σ + µq
t −∆σq

t + σσq
t − r = −σθ

t (σ + σq
t ). (A.6)

If experts hold no capital (xt = 0), σθ
t is smaller than the Sharp ratio:

α− ιt
qt

+ Φ(ιt)− δ −∆σ + µq
t −∆σq

t + σσq
t − r < −σθ

t (σ + σq
t ). (A.7)

In summary, the marginal utility of wealth θt should meet the following condition:

α− ιt
qt

+ Φ(ιt)− δ −∆σ + µq
t −∆σq

t + σσq
t − r ≤ −σθ

t (σ + σq
t ). (A.8)

In Eq. (A.8), the equality holds when xt > 0.
The following demonstrates the rationality of guessing that Vt = θtnt.
Under the measure P, an expert would choose its optimal consumption ratio dζt and risk

asset share xt in the worst case. It is assumed that the representative expert’s value function:

θtnt = sup
dζt≥0,xt≥0

inf
ht∈[−∆,∆]

Et

[∫ ∞

t

e−ρ(s−t)dcs

]
, (A.9)

subject to the Eq. (17) and (19). The process e−ρtθtnt +
∫ t

0
e−ρsdcs is a martingale under the

optimal choice and the worst case. Using Itô’s lemma, we conclude that the expert problem
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satisfies the following Hamilton–Jacobi–Bellman–Isaac equations:

ρθtntdt = sup
dζt≥0,xt≥0

inf
ht∈[−∆,∆]

E[dct] + E[d(θtnt)]

= sup
dζt≥0,xt≥0

inf
ht∈[−∆,∆]

ntdζt + (µθ
t − htσ

θ
t )θtdt

+ xt

(
a− ιt
qt

+ Φ(ιt)− δ − htσ + µq
t − htσ

q
t + σσq

t

)
ntθtdt

+ (r(1− xt)− dζt/dt)ntθtdt+ ntθtxtσ
θ
t (σ + σq

t )dt .

(A.10)

Next, prove that the following equation holds

θtnt = Et

[∫ ∞

t

e−ρ(s−t)dcs

]
. (A.11)

Consider the process:

Mt = e−ρtθtnt +

∫ t

0

e−ρsdcs. (A.12)

By differentiating Mt with respect to t, and applying Itô’s lemma, we have

dMt = d(e−ρtθtnt) + d

(∫ t

0

e−ρsdcs

)
= −ρe−ρtθtntdt+ e−ρtd(θtnt) + e−ρtdct

= e−ρt(−ρθtntdt+ d(θtnt) + dct).

(A.13)

If ρθtnt = dct + E[d(θtnt)] holds, then E[dMt] = 0, so Mt is a martingale under the optimal
strategy (ζt, xt) and the worst case ht. Therefore,

θ0n0 =M0 = E[Mt] = E[e−ρtθtnt] + E
[∫ t

0

e−ρsdcs

]
. (A.14)

Taking the limit t→ ∞ and using the transversality condition E[e−ρtθtnt] → 0, we have

θ0n0 = E
[∫ ∞

0

e−ρsdcs

]
. (A.15)

Similar to the calculation of 0, we can ascertain that this equation is valid at any time t.
In contrast, according to equation (A.11) for the optimal strategy and the worst case, we

have

e−ρtθtnt = Et

[∫ ∞

t

e−ρsdcs

]
. (A.16)

Add
∫ t

0
e−ρsdcs to both sides of this equation, then,

e−ρtθtnt +

∫ t

0

e−ρsdcs = Et

[∫ ∞

t

e−ρsdcs +

∫ t

0

e−ρsdcs

]
. (A.17)
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So, we have

Mt = e−ρtθtnt +

∫ t

0

e−ρsdcs = Et

[∫ ∞

0

e−ρsdcs

]
, (A.18)

then Mt is a martingale. Therefore, the drift of Mt must be zero, and so ρθtnt = dct+E[d(θtnt)]

holds under the optimal strategy and the worst case.
Next, we will demonstrate that the strategy {x, dζt} is optimal if and only if the Bellman

equation (A.10) holds. Under any alternative strategy {x, dζt}, define the following process:

Mt = e−ρtθtnt +

∫ t

0

e−ρsdcs. (A.19)

Fix the process h∗ for the worst case. By Itô’s lemma under the probability measure P,

eρtdMt = G
(x,dζ,h)
t dt− ρθtntdt+ (1− θt)ntdζt

≤ G
(x∗,dζ∗,h∗)
t dt− ρθtntdt+ (1− θt)ntdζt ≤ 0,

(A.20)

where

G
(x,dζ,h)
t = (µθ

t − htσ
θ
t )θt + r(1− xt)ntθt + ntθtxtσ

θ
t (σ + σq

t )

+ xt

(
a− ιt
qt

+ Φ(ιt)− δ − htσ + µq
t − htσ

q
t + σσq

t

)
ntθ,

(A.21)

the HJBI equation (A.10) holds, then Mt is a supermartingale under an arbitrary alternative
strategy, this implies that

M0 ≥ E [Mt∧τ ] . (A.22)

For any finite time t ≥ 0, taking limit as t→ ∞, we have

M0 ≥ E [Mτ ] ≥ inf
h∈[−∆,∆]

E [Mτ ] . (A.23)

Taking supremum for (x, dζt) and using (A.19), we obtain

θ0n0 =M0 ≥ sup
dζ≥0,x≥0

E [Mτ ] ≥ sup
dζ≥0,x≥0

inf
h∈[−∆,∆]

E [Mτ ] . (A.24)

Fixing (x∗, dζ∗t ) and consider any process (ht) , we use Itô’s lemma to derive

eρtdMt = G
(x,dζ,h)
t dt− ρθtntdt+ (1− θt)ntdζt

≥ G
(x∗,dζ∗,h∗)
t dt− ρθtntdt+ (1− θt)ntdζt ≥ 0.

(A.25)

Note that G(x∗,dζ∗,h∗)
t − ρθtnt = 0. Thus Mt is a submartingale. This implies that

M0 ≤ E [Mt∧τ ] . (A.26)
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For any finite time t, taking limit as t→ ∞, we have

n0θ0 ≤M0 ≤ E [Mτ ] . (A.27)

Taking infimum for h and using (A.19), we obtain

θ0n0 =M0 ≤ inf
h∈[−∆,∆]

E [Mτ ] ≤ sup
dζ≥0,x≥0

inf
h∈[−∆,∆]

E [Mτ ] . (A.28)

Thus, we deduce that

θ0n0 =M0 = sup
dζ≥0,x≥0

inf
h∈[−∆,∆]

E [Mτ ] . (A.29)

B Proof of Proposition 2

Using Itô’s lemma, qt = q(ηt) can be transformed into

dqt =

[
q′(ηt)µ

η
t ηt +

1

2
q′′(ηt)(σ

η
t )

2(ηt)
2

]
dt+ q′(ηt)σ

η
t ηtdWt. (B.1)

Consequently,

µq
t =

q′(ηt)µ
η
t ηt +

1
2
q′′(ηt)(σ

η
t )

2(ηt)
2

qt
, (B.2)

σq
t =

q′(ηt)µ
η
t ηt

qt
=
q′(ηt)

qt
(ψt − ηt)(σ + σq

t ) =
(ψt − ηt)q

′(ηt)/q(ηt)

1− (ψt − ηt)q′(ηt)/q(ηt)
σ. (B.3)

Combine Eq. (31) with Eq. (B.3), we have

ση
t =

ψt/ηt − 1

1− (ψt − ηt)q′(ηt)/q(ηt)
σ, (B.4)

σq
t =

q′(ηt)

q(ηt)
ηtσ

η
t . (B.5)

Similarly, we have

µθ
t =

θ′(ηt)µ
η
t ηt +

1
2
θ′′(ηt)(σ

η
t )

2(ηt)
2

θt
, (B.6)

σθ
t =

θ′(ηt)

θ(ηt)
ηtσ

η
t . (B.7)

If the wealth share held by experts falls to 0 (η = 0), experts would have to liquidate their
capital. In that case, the capital price would be the liquidation price q , i.e.,

q(0) = q. (B.8)
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At this point, the utility of each expert is infinite, i.e.,

lim
ηt→0

θ(ηt) = +∞. (B.9)

Define η∗ as the critical wealth share at which experts choose to consume, i.e.,

θ(η∗) = 1. (B.10)

Meanwhile, q(ηt) and θ(ηt) satisfy the smooth contact condition when η = η∗ , i.e.,

q′(η∗) = 0, (B.11)

θ′(η∗) = 0. (B.12)

C Proof of Proposition 3

Tη0(η) denotes the expected time it takes to reach a point η0 starting from η ≥ η0. To reach
η0 from η∗, one has to reach η ∈ (η0, η

∗) first and then reach η0 from η.Therefore,

τ(η) = τ(η0)− Tη0(η). (C.1)

Since t+ Tη0(η) is a martingale, Tη0(η) shall satisfy the ordinary differential equation

1 + µη
t ηT

′
η0
(η) +

1

2
(ση

t η)
2T ′′

η0
(η) = 0. (C.2)

As τ ′(η) = −T ′
η0
(η) and τ ′′(η) = −T ′′

η0
(η), τ(η) meets

1− µη
t ητ

′(η) +
1

2
(ση

t η)
2τ ′′(η) = 0. (C.3)

with boundary value conditions τ(η∗) = 0 and τ ′(η∗) = 0.

D Algorithms for Numerical Solution

Assuming that we know η, q(η), q′(η), θ(η), θ′(η) and have a guess of ψ(η), the goal of the
algebra is to compute q′′(η) and θ′′(η), and check whether the guess of ψ(η) was correct or not.
The algorithm is summarized as follows.

Algorithm 1. Start with η, q(η), q′(η), θ(η), θ′(η). Search for an appropriate value of
ψ ∈ {η,min[1, q(η)/q′(η) + η]} via the following procedure.
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(i) Set ψL = η and ψH = min[1, q(η)/q′(η) + η]. Guess that ψ = (ψL + ψH)/2.
(ii) Calculate σq

t , ση
t , σθ

t and µq
t from Eq. (42) to Eq. (47).

(iii) If Eq. (24) is satisfied, adjust the guess of ψ by setting ψH = ψ. Otherwise, adjust the
guess of ψ by setting ψL = ψ.

(iv) Repeat the step (ii) and (iii) for 30 times.
After step (iv), we can find an appropriate value of ψ. Based on this value, we execute Eq.

Eq. (42) to Eq. (47) to get q′′(η) and θ′′(η).
In Algorithm 1, the numerical computation of the functions q(η), θ(η) and ψ(η) poses several

challenges. The first one relates to the singularity at η = 0. Secondly, we need to determine
the endogenous endpoint η∗ and match the boundary conditions at both 0 and η∗. Fortunately,
it is helpful to observe that, given function θ(η) solves the equations of Proposition 2, function
ξθ(η) solves Proposition 2 for any constant ξ > 0. Therefore, it is feasible to adjust the level
of θ(η) ex post to match the boundary condition.

Algorithm 2 performs an appropriate search and effectively addresses the singularity issue
by solving the system of equations with the boundary condition θ(0) =M , for a large constant
M , instead of Eq. (38).

Algorithm 2. Set

q(0) = q = max
ιt

=
α− ιt

r − [Φ(ιt)− δ −∆σ]
, θ(0) = 1 and θ′(0) = −1010. (D.1)

Perform the following procedure to find an appropriate boundary condition q′(0).
(i) Set qL = 0 and qH = 1015. Guess that q′(0) = (qL + qH)/2.
(ii) Use ode451 to solve for q(η) and θ(η) on the interval [0, η∗] until one of the following

events happens:(a) q(η) reaches the upper bound maxιt
(α−ιt)

r−[Φ(ιt)−δ−∆σ]
; (b) θ′(η) reaches 0; (c)

q′(η) reaches 0.
(iii) If step (ii) is terminated for reason (c), increase the guess of q′(0) by setting qL = q′(0).

Otherwise, decrease the guess of q′(0) by setting qH = q′(0).
(iv) Repeat the step (ii) and (iii) until convergence.
If the initial value of qH is sufficiently large, θ′(η) and q′(η) should eventually reach 0 at

the same point, which we denote by η∗. Divide the entire function θ(η) by θ(η∗), then, the
boundary condition θ(η∗) = 1 is met.

1An ODE solver in MATLAB.
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